
Memory, pointers, and C
David Kotz

Dartmouth College – Computer Science 50
April 2017

Computer architecture

CPU RAM
(1-4GB)

disk
(100-1000GB)display keyboard

fetch instructions

load & store data

data programs
stores files in a

filesystem; some of
those files are

executable
programs

stores code for
currently-running

programs, and their
current data

Memory (RAM)
Every process (running program) has its own memory;
every byte in memory has a unique numeric address.

0 address high
today, addresses are 64-bit numbers,
so they can refer to 18 x 1018 bytes;

that’s 18 exabytes!
example: 0x00007FFD7865430C

Memory (RAM)
Every process (running program) has its own memory;
every byte in memory has a unique numeric address.

0 address high
today, addresses are 64-bit numbers,
so they can refer to 18 x 1018 bytes;

that’s 18 exabytes!
example: 0x00007FFD7865430C

0x means hexadecimal

int main()
{
 char c = 'x'; // a character
 char *p = &c; // a pointer to a character
 char **pp = &p; // a pointer to a pointer to a character

 printf("c = '%c'\n", c);
 printf("p = %12p, *p = '%c'\n", p, *p);
 printf("pp = %12p, *pp = %12p, **pp = '%c'\n", pp, *pp, **pp);

 return 0;
}

Characters, and pointers

see pointer0.c

c = 'x'
p = 0x7fffcc62d597, *p = 'x'
pp = 0x7fffcc62d588, *pp = 0x7fffcc62d597, **pp = 'x'

pointer0.c – output

notice that *pp == p
and that **pp == *p == c

because that’s how they were initialized

‘x’
pp p c

Strings in memory

C o mp u t e r S c i e n c e ø

C has no “string” type; a string is an array of characters ending in a null
character (‘\0’); we often refer to a string with a pointer to its first character.

0 address high

CS see pointer1.c

pointer1.c
char *CS = "Computer Science";

int main()
{
 printf(" CS = %12p, *CS = '%c', CS as string = '%s'\n", CS, *CS, CS);

 for (char *p = CS; *p != '\0'; p++) {
 printf(" p = %12p, *p = '%c'\n", p, *p);
 }

 return 0;
}

pointer1.c – output
 CS = 0x0000400630, *CS = 'C', CS as string = 'Computer Science'
 p = 0x0000400630, *p = 'C'
 p = 0x0000400631, *p = 'o'
 p = 0x0000400632, *p = 'm'
 p = 0x0000400633, *p = 'p'
 p = 0x0000400634, *p = 'u'
 p = 0x0000400635, *p = 't'
 p = 0x0000400636, *p = 'e'
 p = 0x0000400637, *p = 'r'
 p = 0x0000400638, *p = ' '
 p = 0x0000400639, *p = 'S'
 p = 0x000040063a, *p = 'c'
 p = 0x000040063b, *p = 'i'
 p = 0x000040063c, *p = 'e'
 p = 0x000040063d, *p = 'n'
 p = 0x000040063e, *p = 'c'
 p = 0x000040063f, *p = 'e'

pointer1.c – output
 CS = 0x0000400630, *CS = 'C', CS as string = 'Computer Science'
 p = 0x0000400630, *p = 'C'
 p = 0x0000400631, *p = 'o'
 p = 0x0000400632, *p = 'm'
 p = 0x0000400633, *p = 'p'
 p = 0x0000400634, *p = 'u'
 p = 0x0000400635, *p = 't'
 p = 0x0000400636, *p = 'e'
 p = 0x0000400637, *p = 'r'
 p = 0x0000400638, *p = ' '
 p = 0x0000400639, *p = 'S'
 p = 0x000040063a, *p = 'c'
 p = 0x000040063b, *p = 'i'
 p = 0x000040063c, *p = 'e'
 p = 0x000040063d, *p = 'n'
 p = 0x000040063e, *p = 'c'
 p = 0x000040063f, *p = 'e'

notice:
• both p and CS are pointers
• p initially has the same value as CS
• (i.e., points to the same address)
• incrementing p steps to the next char
• since sizeof(char)=1, address increments by 1
• p is an address, *p is a character
• printf can print a pointer with %p, or interpret

that pointer as address of a string with %s

Code, data, heap, and stack
Process memory includes compiled code (machine instructions),

data (global variables), heap (dynamically allocated), and stack (local variables)

0 address high

stackheapdatacode

Not all addresses will be used; and different compilers and
operating systems may lay out the four segments differently

Code memory
All your C code is compiled into machine instructions, linked with

libraries, and laid out within the code segment

… address …

main

See example: pointer2.c
Again, the code segment is not necessarily in low memory.

change printf

Data memory
All your global variables are laid out in the data segment

… address …

fifteen

See example: pointer2.c
Again, the data segment is not necessarily in low memory.

…

pointer2.c (part 1)
const int fifteen = 15;
int main()
{
 // local variables are on the stack
 int x = 2, y = 5;

 // global variables; note they are in low memory addresses
 printf("globals\n");
 printf(" fifteen @ %12p has value %d\n", &fifteen, fifteen);

 // main() is a function, and its code is at an address too!
 printf("main @ %12p\n", main);

 // local variables are on the stack
 printf(" x @ %12p has value %d\n", &x, x);
 printf(" y @ %12p has value %d\n", &y, y);
...

Stack memory
Functions’ local variables live in the stack segment, aka, “on the stack”

along with a record of the function-call sequence

… address high

x

The stack starts in high(er) memory addresses, and grows
“down” toward lower addresses as function calls are nested

See pointer2.c

y

pointer2.c – output (part 1)
globals – data segment
 fifteen @ 0x0000400750 has value 15
main @ 0x00004005f6 – code segment
 x @ 0x7ffdbf396d3c has value 2 – stack segment
 y @ 0x7ffdbf396d38 has value 5 – stack segment

notice that all variables, and functions, have an address;
the name of a function is actually a pointer to that function.
stack variables are in high memory.

pointer2.c (part 2)
main...
 // pass x by reference, y by value
 change(&x,y);

 // see whether those changed
 printf("main @ %12p\n", main);
 printf(" x @ %12p has value %d\n", &x, x);
 printf(" y @ %12p has value %d\n", &y, y);
...
}

void change(int *a, int b)
{
 // as above, change() is a function,
 // and its parameters and local variables are on the stack
 printf("change @ %12p\n", change);
 printf(" a @ %12p has value %d at %12p\n", &a, *a, a);
 printf(" b @ %12p has value %d\n", &b, b);
 // attempt to change the values
 *a = 99;
 b = 99;
}

Stack memory
Functions’ local variables live in the stack segment, aka, “on the stack”

along with a record of the function-call sequence

… address high

x

The stack starts in high(er) memory addresses, and grows
“down” toward lower addresses as function calls are nested

See pointer2.c

yreturn
addressab

Stack memory
Functions’ local variables live in the stack segment, aka, “on the stack”

along with a record of the function-call sequence

… address high

xyreturn
addressab

Stack memory
Functions’ local variables live in the stack segment, aka, “on the stack”

along with a record of the function-call sequence

… address high

xyreturn
addressab

points to an instruction in code segment

pointer2.c – output (part 2)
main @ 0x0000400566 – code segment
 x @ 0x7ffdbf396d3c has value 2
 y @ 0x7ffdbf396d38 has value 5
change @ 0x0000400645 – code segment
 a @ 0x7ffdbf396d18 has value 2 at 0x7ffdbf396d3c
 b @ 0x7ffdbf396d14 has value 5
main @ 0x0000400566
 x @ 0x7ffdbf396d3c has value 99
 y @ 0x7ffdbf396d38 has value 5

notice that the addresses of a and b are not the same as x and y.
notice that a receives the value of &x, and thus points to the same address.
when change() assigns to *x, the value of x changes – not so for y.

Heap
The heap is for dynamically-allocated memory – when you don’t know in advance

how much space you’ll need, or so you can build complex data structures.

… address …

C has no language feature like Java’s new and delete.
Instead, a library provides malloc() and free() functions;

that library manages used and free space within the heap.

pointer3.c
int main()
{
 char *hello = "hello world!";
 char buf[15];

 strcpy(buf, "something"); // initialize buf

 // local variables are on the stack
 printf(" hello @ %12p has value '%s', which resides at %12p\n", &hello, hello, hello);
 printf(" buf @ %12p has value '%s', which resides at %12p\n", &buf, buf, buf);

 // malloc allocates space on the heap
 hello = (char *)malloc(10);
 strcpy(hello, "new stuff");
 printf(" now hello @ %12p has value '%s', which resides at %12p\n", &hello, hello, hello);
 // free lets the heap re-use that space
 free(hello);
 printf(" note hello @ %12p still points to %12p\n", &hello, hello);
...

Heap
The heap is for dynamically-allocated memory – when you don’t know in advance

how much space you’ll need, or so you can build complex data structures.

… address …

The heap manager allocates 10 bytes and returns the address,
which we save in the pointer variable hello.

Heap
The heap is for dynamically-allocated memory – when you don’t know in advance

how much space you’ll need, or so you can build complex data structures.

… address …

The heap manager allocates 10 bytes and returns the address,
which we save in the pointer variable hello.

hello

pointer3.c – output
 hello @ 0x7ffc79c14658 has value 'hello world!', which resides at 0x0000400720

notice it is a different address! because it was initialized to point to a constant string.

 buf @ 0x7ffc79c14640 has value 'something', which resides at 0x7ffc79c14640

notice it is the same address! because buf is a character array on the stack.

 now hello @ 0x7ffc79c14658 has value 'new stuff', which resides at 0x0002278420
notice it now points to a new address – inside the heap – provided by malloc()

 note hello @ 0x7ffc79c14658 still points to 0x0002278420
calling free(hello) did not change the pointer, but we should never use that pointer value!

Heap
The heap is for dynamically-allocated memory – when you don’t know in advance

how much space you’ll need, or so you can build complex data structures.

… address …

After free(hello) the heap manager thinks the space is now
unallocated and can be used to support future malloc() calls.

If we keep and re-use the hello pointer, bad stuff happens!

hello

Array of strings

John

char *names[6]

Trevor

Kayla

Thomas

Joel

Kyle

see names3.c

